Homework 2: Probability Models

BEE 4850/5850

Due Date

Friday, 2/20/26, 9:00pm

@ Tip

To do this assignment in Julia, you can find a Jupyter notebook with an appropriate
environment in the homework’s Github repository. Otherwise, you will be responsible for
setting up an appropriate package environment in the language of your choosing. Make
sure to include your name and NetID on your solution.

Overview
Instructions

The goal of this homework assignment is to practice developing and working with probability
models for data.

e Problem 1 asks you to fit some linear regressions to Chicago mortality data.

¢ Problem 2 asks you to analyze the probability of Cayuga Lake freezing using a logistic
regression model.

e Problem 3 asks you to use Poisson regression to predict salamander counts based on
environmental data.

o Problem 4 asks you to look at the impact of the gender of hurricane names on deaths'.

Yes, seriously. Ish. Trust me, I know.


https://github.com/bee-envdata-cornell/hw02

Load Environment

The following code loads the environment and makes sure all needed packages are installed.
This should be at the start of most Julia scripts.

import Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()

The following packages are included in the environment (to help you find other similar packages
in other languages). The code below loads these packages for use in the subsequent notebook
(the desired functionality for each package is commented next to the package).

using Random # random number generation and seed-setting

using DataFrames # tabular data structure

using CSV # reads/writes .csv files

using Distributions # interface to work with probability distributions
using Plots # plotting library

using StatsBase # statistical quantities like mean, median, etc

using StatsPlots # some additional statistical plotting tools

using Optim # optimization tools

using LaTeXStrings # latex formatting for plot strings

Problems
Problem 1 (6 points)

Let’s revisit the chicago dataset from HW1 (found in data/chicago.csv). We will look at
the relationship of the potential predictor variables pm25median (the median density of smaller
pollutant particles), o3median (the median concentration of Oj3), so2median (the median
concentration of SO,), and tmpd (mean daily temperature) with the variable we would like to
predict, death (the number of non-accidental deaths on that day).

Problem 1.1

Plot each predictor variable against the response variable (make sure to include labels and titles
for each plot). Describe what you observe about the bivariate relationships, if one exists (e.g.
does it look like they exist, are they linear, positive/negative, etc.) Does a linear regression
seem appropriate from any of these plots? Which predictor do you think is most appropriate
for a linear regression model and why?



Problem 1.2

You decide to focus on the relationship between tmpd and death. Your classmate suggests
that you use a Gaussian-error linear regression model. Based on this suggestion, calculate the
regression coefficients and error variance. Explain the interpretation of the coefficients that
you obtain in this specific problem context.

Problem 1.3

Add your fitted regression line and a 90% prediction interval to your scatterplot of tmpd and
death. Using this and any other diagnostics, do you agree with the Gaussian-error linear model
assumption? Why or why not?

Problem 2 (6 points)

This problem is adapted from Example 4.1 and 4.2 in Daniel Wilks’ Statistical Methods in
the Atmospheric Sciences. Updating the table in that book, Cayuga Lake has frozen in
1796, 1816, 1856, 1875, 1884, 1904, 1912, 1934, 1961, 1979, and 2015%. The probability of
whether a severe enough cold spell to freeze the lake occurs is related to changes in global
mean temperature. The file data/HadCRUT5. 1Analysis_gl.txt contains estimates of monthly
global mean temperature anomalies (in ° C, relative to the 1961-1990 mean) as well as the
annual global temperature anomaly. You would like to build a model to predict the probability
that Cayuga Lake freezes based on the winter (DJF) temperature anomaly.

Problem 2.1

Write down a logistic regression model for the probability that Cayuga Lake freezes in a given
winter. Encode the occurrence of freezing as a 1, and non-freezing as 0. Load the temperature
data and fit this model. The format of the data file is a little awkward, as the even rows are the
number of stations (which should be ignored) and have uneven number of space delimiters. The
first 13 columns are the year and the monthly means; the final column is the annual average
(which we don’t want to use). Another complication is that the (even-numbered) station rows
don’t have an entry in the 14th column. In Julia, you can load the file with

temp_dat = CSV.read("data/HadCRUT5.1Analysis_gl.txt", delim=" ",
ignorerepeated=true, header=false,
silencewarnings=true, DataFrame)

2Many of these dates, particularly prior to the 20th century, are subject to some debate, and would be different
depending on the data source. Nevertheless, let’s use this dataset.



To simplify the analysis, since we don’t always know whether the lake froze in the January
starting a year or the December ending a year, let’s assume that the years in which the lake
froze correspond to the winter starting the year (so the DJF mean corresponding to the freezing
in 1884 would include the December from 1883 and the January and February from 1884).
You will only be able to use freezing events between 1851 and the present day due to the
temperature data. Interpret the coefficients from your model fit in this specific problem
context.

Problem 2.2

Plot the modeled probability of freezing as a function of the DFJ temperature anomaly, and
how this probability has changed over time. Does this model seem reasonable? How might you
determine this?

Problem 2.3

What winter temperature anomaly would be required for less than a 1% probability of Cayuga
Lake freezing?

Problem 3 (6 points)

The file data/salamanders.csv contains counts of salamanders from 47 different plots of the
same area in California, as well as the percentage of ground cover and age of the forest in the
plot. You would like to see if you can use these data to predict the salamander counts with a
Poisson regression.

Problem 3.1

Write down and fit a Poisson regression model for salamander counts using the percentage of
ground cover as a predictor. You may need to standardize the predictors as they are much
larger than the counts, which you can do using the following function (or its equivalent):

stdz(x) = (x .- mean(x)) / std(x) ©)

(» This function makes it convenient to standardize when we fit the models, rather than
changing the data itself.

stdz (generic function with 1 method)



Problem 3.2

Plot the expected counts and 90% prediction intervals from your model (based on 1,000
simulations from the model) along with the data. How well does the model predict the observed
counts? In what ways does it do a good or bad job?

Problem 3.3

Can you improve the model by including forest age as a predictor? How did you determine
whether this helps or does not help with prediction?

Problem 4 (7 points)

In 2014, a paper was published in a prestigious journal which claimed that hurricanes with
more feminine names are deadlier than hurricanes with more masculine names because people
take warnings about female-named hurricanes less seriously®. The file data/Hurricanes.csv
contains the original data used in this analysis (note that this dataset excludes Hurricanes
Katrina and Audrey because they were “outliers”). While we won’t replicate the specific
analysis in this paper, let’s use the data to look at this hypothesis.

Problem 4.1

One might interpret the hypothesis to claim that the impact of the name is strengthened by the
the more powerful. A measure of hurricane strength is its minimum pressure (min_pressure
in the dataset). Fit a Poisson regression model that predicts deaths (deaths) using the gender
of the name (female) and minimum pressure (you may need to standardize the pressure). We
use female instead of the continuous measure of the femininity of the name as this is highly
subjective and has some weird coding (such as “Sandy” being coded as one of the most female
names).

Problem 4.2

Interpret the results by generating 10,000 counterfactual simulations for hurricanes with male
and female names. Plot the expected values and 90% prediction intervals from these two sets
of simulations and compare with the observed storm deaths. Where does the model do well or
not well?

3This paper has become a bit of a joke among statisticians, but let’s take the hypothesis seriously for this
problem’s sake.


https://www.pnas.org/doi/10.1073/pnas.1402786111

Problem 4.3

Does the gender effect size resulting from this model seem reasonable to you? Draw on
qualitative or quantitative assessments to justify your assessment of reasonableness.

Problem 4.4

We can now stop taking this hypothesis seriously. To what extent do you think the finding
could be an artifact of the dataset (e.g. there is no actual effect, but there are coincidental
features of the data that produce the result that female-named storms are more deadly than
male-named storms)? Justify this conclusion with specific reference to an exploratory analysis
of the data.
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