
Homework 1 Solutions
BEE 4850/5850

Due Date

Friday, 2/6/25, 9:00pm

Load Environment

The following code loads the environment and makes sure all needed packages are installed.
This should be at the start of most Julia scripts.

import Pkg
Pkg.activate(@__DIR__)
Pkg.instantiate()

The following packages are included in the environment (to help you find other similar packages
in other languages). The code below loads these packages for use in the subsequent notebook
(the desired functionality for each package is commented next to the package).

using Random # random number generation and seed-setting
using DataFrames # tabular data structure
using CSVFiles # reads/writes .csv files
using Distributions # interface to work with probability distributions
using Plots # plotting library
using StatsBase # statistical quantities like mean, median, etc
using StatsPlots # some additional statistical plotting tools
using Dates # DateTime API

1

Problems

Problem 1

Problem 1.1

First, let’s load the data.

load the data
data = DataFrame(load("data/bites.csv")) # load data into DataFrame

split data into vectors of bites for each group
beer = data[data.group .== "beer", :bites]
water = data[data.group .== "water", :bites]

observed_difference = mean(beer) - mean(water)

4.37777777777778

Now, we write a function (simulate_differences()) to generate a new data set and compute
the group differences under the skeptic’s hypothesis by shuffling the data across the two groups
(this is called the non-parametric bootstrap, which we will talk about more later):

simulate_differences: function which simulates a new group difference based
on the skeptic's hypothesis of no "real" difference between groups by
shuffling the input data across groups

↪

↪

inputs:
y�: vector of bite counts for the beer-drinking group
y�: vector of bite counts for the water-drinking group
output:
a simulated difference between shuffled group averages
function simulate_differences(y�, y�)

concatenate both vectors into a single vector
y = vcat(y�, y�)

create new experimental groups consistent with skeptic's hypothesis
y_shuffle = shuffle(y) # shuffle the combined data
n� = length(y�)
x� = y_shuffle[1:n�]
x� = y_shuffle[(n�+1):end]

compute difference between new group means
diff = mean(x�) - mean(x�)

2

return diff
end

simulate_differences (generic function with 1 method)

Next, we evaluate this function 10,000 times and plot the resulting histogram of differences.

In Julia (and in Python), it is convenient to use a comprehension to automatically allocate the
output of the for loop to a vector. The syntax for a comprehension is [some_function(input)
for input in some_range]. In this case, the index input doesn’t appear in the comprehen-
sion as we’re just repeating the exact same calculation every time:

shuffled_differences = [simulate_differences(beer, water) for i in 1:50_000]

50000-element Vector{Float64}:
-1.5466666666666669
-0.5911111111111111
-0.3044444444444423
-0.7822222222222202
0.9377777777777787
2.944444444444443
-1.9288888888888884
0.7466666666666661
-2.024444444444441
-1.3555555555555578
�
-0.3999999999999986
-2.6933333333333316
0.36444444444444457
-0.4955555555555584
-2.2155555555555573
-0.3044444444444423
0.46000000000000085
-2.2155555555555573
0.5555555555555571

Without a comprehension, this loop would look something like:

shuffled_diffs = zeros(10_000)
for i in 1:length(shuffled_diffs)

shuffled_differences[i] = simulate_differences(beer, water)
end

3

Now let’s plot the histogram.

hist = histogram(shuffled_differences, label="Simulated Differences") # plot
the basic histogram↪

MAKE SURE TO ADD AXIS LABELS!
xlabel!(hist, "Increased Number of Average Bites for Beer Group")
ylabel!(hist, "Count")

now add a vertical line for the experimentally-observed difference
vline!(hist, [observed_difference], color=:red, linestyle=:dash,

label="Observed Difference") 1↪

1 vline!() (which creates a vertical line) is an example of a mutating function, which modifies
an existing object in-place (meaning that it does not create a new object). In this case,
looking at the plot hist before the vline!() call would not show the line, while looking
at it afterwards will. This is in contrast with a non-mutating function, which would
return a new object which would need to be saved in a variable. Julia convention is to
name mutating functions with exclamation marks (e.g. vline!) to distinguish them
from non-mutating functions; not all languages are this strict, so be aware of whether
you’re using a mutating or a non-mutating function. Also, specifically passing hist to
vline!() is not strictly necessary; often mutating functions will assume that the object
to be modified is the last object which has been referenced. But passing the object
removes ambiguity and avoids accidentally overwriting the wrong one.

4

Figure 1: Histogram of simulated differences between the average bites for the beer group and
the average bites for the water group under the assumption that differences are due
only to random chance. A positive value indicates that the beer group is bitten more
often. The red line is the group difference from the experimental data.

Problem 1.2

What do we see from Figure 1?

• The simulated differences follow roughly a normal distribution centered at a value of
zero. This is not surprising given the hypothesis that there is no “true” difference in bite
frequency between the two groups.

• The observed data are extremely unlikely if the skeptic’s hypothesis is true. We can
calculate the probability of seeing data that extreme given this hypothesis (also called
the p-value) by finding the empirical cumulative density function of the simulated data
vector:

empirical_cdf = ecdf(shuffled_differences)
1 - empirical_cdf(observed_difference)

This shows that we would only expect, given the skeptic’s hypothesis, to see data at least
this extreme by chance in 0.04% of experiments. If we don’t think that our experiment
is likely to be an outlier, this suggests that the skeptic’s hypothesis is quite unlikely.

5

However, this does not mean our mechanistic theory for the group difference is correct:
this would require more work and maybe a more targeted experiment!

Problem 2

Problem 2.1

Let’s load the dataset and do some basic EDA. First, the quantiles:

load the data
chicago_dat = DataFrame(load("data/chicago.csv")) # load data into DataFrame

get the summary quantiles
mapcols(col -> quantile(skipmissing(col), [0, 0.25, 0.5, 0.75, 1.0]),

chicago_dat[:, 2:end]) 1↪

1 There are two syntax features here that might be of interest to students using Julia. First,
mapcols applies a function to every column of a DataFrame (“map” means a function is
applied to subsets of a collection, such as an array). In this case, we define an anonymous
function which takes each row, skips the missing values ('skipmissings), and computes
the quantiles we’re interested in (note that we skip the first column; this just the row
indices). In other languages, there may be built in functions which do this more directly.
Second, end is “syntactical sugar” for the final index of an array; it internally calls nrow,
ncol, or length, depending on the application (meaning it is not “optimal” in terms of
runtime, but the penalty is pretty minor), but is a bit simpler to read. You can also
modify it to get indices that aren’t from the end, e.g. end-1 gives you the penultimate
index.

death pm10median pm25median o3median so2median time tmpd
Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 69.0 -37.3761 -16.4264 -24.7794 -8.2061 -2556.5 -16.0
2 105.0 -13.1082 -6.58841 -10.2319 -2.68935 -1278.25 35.0
3 114.0 -3.53906 -1.32584 -3.32586 -1.21826 0.0 51.0
4 124.0 8.30292 5.34377 4.46821 0.831593 1278.25 67.0
5 411.0 320.725 38.1504 43.6878 28.9034 2556.5 92.0

To compute the mean, we can take a similar mapcols approach:

compute the mean of each column
mapcols(col -> mean(skipmissing(col)), chicago_dat[:, 2:end])

6

death pm10median pm25median o3median so2median time tmpd
Float64 Float64 Float64 Float64 Float64 Float64 Float64

1 115.419 -0.14639 0.243053 -2.17938 -0.636071 0.0 50.1933

Finally, we want to count the number of missing values. In Julia, we can do this by summing the
ismissing() function, which returns a true value if the value is missing and is false otherwise.
There are similar functions in other languages; but this is a reason to avoid imputing values
such as 0 where data are missing.

count the number of missing values
mapcols(col -> sum(ismissing.(col)), chicago_dat[:, 2:end]) 1

1 We need to broadcast ismissing as it is defined on individual values, not vectors (and the
entire column is not missing, so it will return false). Just calling sum(ismissing(col))
would give us a 0. Make sure you look at the documentation of functions to ensure that
they behave as you expect!

death pm10median pm25median o3median so2median time tmpd
Int64 Int64 Int64 Int64 Int64 Int64 Int64

1 0 251 4387 0 27 0 0

The temperature units are in degrees Fahrenheit, not Celsius, which we can see by the scale.
That the pollution variables are below zero approximately half the time (based on the median)
suggests that they are anomalies, in this case from the mean.

Problem 2.2

We first want to convert time to the calendar date. To do that, we need to identify the zero
date and recognize that the dates are also shifted by a value of 0.5. We can see from the first
and last values of the time column that the values are symmetric, which means they are likely
days from a central value. If we eliminate the decimal by adding 0.5, the first value (which
should correspond to Jan. 1, 1987) is -2556. We can find the zero date by finding the date
which is 2556 days from 01-01-1987. This will look different in different languages, but in Julia
(using the features and syntax from Dates.jl:

Date(1987-01-01) + Day(2556) 1

1 This uses the DateTime formatting from Dates.jl. The nice thing about this syntax is it
lets us treat units as time arithmetically.

1992-01-01

7

So, since we added 0.5 to each row, the zero date is Dec. 31, 1993 (it would be Jan. 1, 1994 if
we subtracted). As a result, we can convert the time column to a date:

day_zero = Date("1993-12-31")
chicago_dat.Date = day_zero .+ Day.(chicago_dat.time .+ 0.5) 1

1 df.colname lets us reference and extract only the named column.

5114-element Vector{Date}:
1987-01-01
1987-01-02
1987-01-03
1987-01-04
1987-01-05
1987-01-06
1987-01-07
1987-01-08
1987-01-09
1987-01-10
�
2000-12-23
2000-12-24
2000-12-25
2000-12-26
2000-12-27
2000-12-28
2000-12-29
2000-12-30
2000-12-31

Now, let’s plot the deaths versus the date. We’ll use a line plot to make the time trends easier
to see.

make a line plot of the death time series.
plot(chicago_dat.Date, chicago_dat.death, xlabel="Date",

ylabel="Non-Accidental Deaths", legend=false) 1↪

1 I set the legend to false since we only have one data series in this plot. And make sure you
include axis labels and units!

8

Figure 2: Number of non-accidental deaths in Chicago from 1987—2000.

Other than a large spike on a particular day in 1995, Figure 2 reveals that there is some
seasonal variation in the number of deaths. We would need to do more analysis to understand
these variations, but they visually appear regular, with no real trends over time.

Problem 2.3

Now let’s plot the deaths versus the temperature. Here we might want to use a scatterplot since
there is no clear ordering between the temperatures on the x-axis, as there was in Problem 2.2
with time.

make a scatterplot of the deaths vs. temperatures.
scatter(chicago_dat.tmpd, chicago_dat.death, xlabel="Temperature (°F)",

ylabel="Non-Accidental Deaths", markersize=2, alpha=0.8, legend=false) 1↪

1 We use a smaller markersize and lower alpha to make it easier to distinguish individual
points which overlap. You may not need to use both.

9

Figure 3: Number of non-accidental deaths in Chicago from 1987—2000 by daily average
temperature.

Figure 3 shows that there are some large outliers at higher temperatures, but it looks like there
could be a slight negative trend in the deaths as the temperatures increase. Could is the key
word: there is a lot of variation so it’s unclear if that is signal or noise.

Problem 2.4

Neither is particularly clear, but there does not appear visually to be a trend in time, whereas
there does appear to be a slight trend in temperature.

Problem 3

Problem 3.1

This looks the same as in Problem 2, except we only care about summarizing the Flowering.DDY
column. We’ll save the values in a variable since we want to use them in our future plotting.

load the data
cherry_dat = DataFrame(load("data/kyoto.csv")) # load data into DataFrame

10

get the summary quantiles
flower_quantiles = quantile(skipmissing(cherry_dat[:, :"Flowering.DOY"]), [0,

0.25, 0.5, 0.75, 1.0]) 1↪

1 The df[:, :colname] syntax can be used instead of df[:, colindex] (the : indicates
that this is a Symbol, which is how Julia encodes things like DataFrame column names).
When colname is a simple string, this syntax is straightforward; in this case, there is
a decimal in the column name, which gets more complicated as df.colname is also a
way to reference a specific column, as seen in the solution to Problem 2.1. Using quotes
around the name to indicate that the entire thing is a String solves that problem.

5-element Vector{Float64}:
86.0
100.0
105.0
109.0
124.0

Now, let’s compute the mean. We’ll save it in a variable since we want to use it in our future
plotting.

calculate the mean
flower_mean = mean(skipmissing(cherry_dat[:, :"Flowering.DOY"]))

104.54050785973398

Finally, the number of missing values:

count the number of missing values
sum(ismissing.(cherry_dat[:, :"Flowering.DOY"]))

388

Problem 3.2

We’ll make a similar time series plot as in Problem 2.2, with a line plot for the observations
during the year, to help make trends stand out.

plot the flowering series
p = plot(cherry_dat."Year.AD", cherry_dat."Flowering.DOY", xlabel="Year

(AD)", ylabel="Flowering Day of Year", label="Observed Flowering Day")↪

add horizontal lines for the mean

11

hline!(p, [flower_mean], color=:red, label="Flowering DOY Mean") 1

add horizontal lines for the 0.25 and 0.75 quantiles
hline!(p, flower_quantiles[[2,4]], color=:purple, label="Flowering DOY

Quantiles (0.25/0.75)")↪

xticks!(p, 800:100:2100) 2

1 hline!() (and the vertical equivalent, vline!()) wants a vector of values. For the mean,
this means that we had to package the single, scalar value as a 1-value vector by wrapping
it in square brackets. For the quantiles, we are passing a vector of two values, so we don’t
have to do this.

2 xticks!() and yticks!() let us change the position and labels of axis tick marks from
the default ones. Here, we don’t need custom labels, but might benefit from having ticks
every century to help our subsequent analysis. This is typical start:step:stop syntax
for specifying a numerical range with set end points and constant steps.

Figure 4: Day of years of cherry blossom flowering. The red line is the mean and the purple
are the 0.25 and 0.75 quantile throughout the entire historical period.

It looks from Figure 4 as though, until the late 19th/early 20th century, there is no real trend
in the data. However, the “typical” day of flowering appears to be getting earlier after 1900.

12

Problem 4

Problem 4.1

Under the hypothesis that there is no correlation between rigor and impact and that each
marginal property follows a standard normal, we can sample 200 realizations of each and find
the indices of the ones which have been selected. Since we want to do this with multiple
replications, we’ll create a function.

simulate the described grant selection process.
function grant_selection(n)

grants = rand(Normal(0, 1), (n, 2)) 1

total_scores = sum(grants; dims=2) 2

select_threshold = sort(total_scores; dims=1, rev=true)[Int64(0.1 * n)] #
get the threshold score for the top 10%↪

select_idx = total_scores .>= select_threshold
grants = hcat(grants, select_idx) # append selection status to grant
matrix↪

grants_df = DataFrame(grants, [:rigor, :impact, :selected]) 3

return grants_df
end

1 This syntax samples a 200x2 array of values from Normal(0, 1). We could also have
sampled two 200x1 arrays separately; this is just a bit more concise.

2 The dims argument for sum is equivalent to mapping sum across a dimension of an array; there
is similar syntax in NumPy and this could also be done with a loop or a comprehension.

3 This isn’t at all necessary, but converting all of the sampled scores to a single DataFrame
including selection status will let me look at both the overall correlations and create plots
of the full sample compared to the selected subsample. There are many other solutions
that will work!

grant_selection (generic function with 1 method)

Just to explore the impact of the selection process, let’s look at the outcomes from a single
realization.

grant_sim = grant_selection(200)
grant_selected = subset(grant_sim, :selected => x -> x .== 1) 1

p_grants = scatter(grant_sim[!, :rigor], grant_sim[!, :impact], xlabel="Rigor
Scores", ylabel="Impact Scores", label="All Grants") 2↪

scatter!(p_grants, grant_selected[!, :rigor], grant_selected[!, :impact],
color=:red, label="Selected Grants") 3↪

13

1 subset selects a set of rows based on the condition in the second argument; in this case,
evaluating the function x -> x == 1 over each element of the selected column. Since
grant_sim[!, :selected] takes 0 and 1 values, we could also have used x -> Bool.(x)
to transform the values of x to true and false.

2 This command creates the basic scatterplot using the Plots.jl syntax.
3 The plot! command adds new artifacts to an existing plot objective (in this case, p_grants).

If you don’t specify a plot object, it will automatically add to the last plot.

Figure 5: Outcomes of a single realization of the simulated grant selection process under the
assumption of no correlation between rigor and impact. The grants selected for
funding are colored in red.

We can see from Figure 5 that while the overall scores form an uncorrelated blob (correlation
between grant and impact is -0.03), the selected grants have a strong negative correlation
induced by the selection process (correlation -0.62).

That was just one sample, though: now let’s look across 1,000 simulations and plot the
distribution of the correlation coefficients. Again, we’ll create a function to do the grant
simulation and extract the correlation coefficients to simplify the replication process.

function grant_correlation(n_grants, n_replicates)
grant_correlations = zeros(n_replicates, 2) 1

for i = 1:n_replicates 2

14

grant_sim = grant_selection(n_grants)
grant_selected = subset(grant_sim, :selected => x -> x .== 1)
grant_correlations[i, 1] = cor(Matrix(grant_sim[!, 1:2]))[1, 2] 3

grant_correlations[i, 2] = cor(Matrix(grant_selected[!, 1:2]))[1, 2]
end
return grant_correlations

end

grant_cor = grant_correlation(200, 1_000)
p_grantcor = boxplot(["Full Pool" "Selected Grants"], grant_cor,

legend=false, ylabel="Correlation Between Rigor and Impact")↪

1 The zeros function initializes an array of zero values with the desired dimensions; in this
case, each replication should have two values, one for the total pool correlation and one
for the selected grant correlation. It’s always a good idea to pre-allocate memory for
arrays that you intend to fill sequentially when you can; constantly re-allocating memory
can slow down runtimes dramatically.

2 Julia’s loops are quite fast, unlike some languages, so we won’t shy away from using them!
3 cor returns a correlation matrix, and we’re interested in the off-diagonal elements (the

diagonal elements are just one).

Figure 6: Distributions of correlations across the simulated grant pools and the selected grants.

15

We can see from Figure 6 that while the overall pool has its correlation around zero (as
designed), as in our individual example, the selected grants typically have strong negative
correlations between rigor and impact (though there are some simulations with a far weaker
correlation).

Problem 4.2

Why does this correlation occur? The selection process filters for the total scores which are
above a certain threshold. This means that a grant can get above this threshold by compensating
for having a lower rigor score by having a higher impact score, or vice versa, which creates a
negative correlation when one only looks at the selected grants. In other words, this is purely
an artifact of the selection process, not anything intrinsic to the grants themselves
(hence the selection-distortion effect). In fact, the selected grants likely can’t be too weak at
either category; the correlation only looks at the linear relationship between the two measures,
not their values.

Problem 5

Problem 5.1

Let’s start by sketching out the simulation model. For every student, we first need to simulate
the outcome of the first coin flip, which has a 50% probability of heads. If this coin flip comes
up as heads, then the student answers honestly, and admits to cheating with probability 𝑝. If
the coin flip comes up tails, the student flips another coin and answers that they cheated with
probability 50%. After looping over this procedure for each student in the class, we add up the
“true” values.

We might code this model as follows.

cheating_model: function which simulates the outcome of the interview
procedure described in this problem and returns the number of confessions
obtained.

↪

↪

inputs:
p: base probability of cheating under a given hypothesis
n: vector of bite counts for the water-drinking group
output:
a simulated number of confessions for one realization of the process.
function cheating_model(p, n)

initialize the storage vector for whether students admit to cheating
we do this with a boolean vector, which is a little faster, but storing

integers is basically the same thing↪

cheat = zeros(Bool, n)
loop over every student to simulate the interview process

16

for i in 1:n
initial coin flip
rand() simulates a uniform random number between 0 and 1
if rand() >= 0.5

if this came up heads, simulate whether the student cheated
based on the cheating probability↪

if rand() < p
cheat[i] = true

else
cheat[i] = false

end
else

otherwise, simulate another coin flip
if rand() >= 0.5

cheat[i] = true
else

cheat[i] = false
end

end
end
return the total number of cheating admissions
return sum(cheat)

end

cheating_model (generic function with 1 method)

Now we simulate under our assumption of low cheating and the TA’s assumption of widespread
cheating and plot the results.

conduct the simulations
no_cheat_data = [cheating_model(0.0, 100) for i in 1:50_000]
low_cheat_data = [cheating_model(0.05, 100) for i in 1:50_000]
high_cheat_data = [cheating_model(0.30, 100) for i in 1:50_000]

plot the histograms with axis labels and a vertical line for the "real"
outcome of the procedure↪

p_cheat = histogram(no_cheat_data, color=:orange, label="Cheating Rate 0%",
alpha=0.4)↪

histogram!(p_cheat, low_cheat_data, color=:blue, label="Cheating Rate 5%",
alpha=0.4) 1↪

histogram!(p_cheat, high_cheat_data, color=:red, label="Cheating Rate 30%",
alpha=0.4)↪

17

xlabel!("Number of Students who Confess to Cheating") 2

ylabel!("Count")
vline!([31], linestyle=:dash, color=:black, linewidth=3, label="Observed

Outcome")↪

1 We can use the mutating versions of plotting functions (histogram!, plot!, scatter!,
etc) to put multiple plots on the same set of axes (for example, overlaying a probability
density function over a histogram).

2 Using xlabel!() and ylabel!() is an alternative to specifying axis labels within the
original plotting function call. This may help make code more readable.

Figure 7: Histograms of the number of simulated confessions obtained under the hypothesis
of a 5% cheating rate (blue) and a 30% cheating rate (red). The green line is the
observed number of cheating confessions.

Problem 5.2

From Figure 7, we can see:

• There is some overlap between your hypothesis and the TA’s around the 25-42 confession
count rate. Lower than 25 students confessing would strongly suggest that the TA is
overstating the rate of cheating, while more than 40 would strongly suggest that you are
underestimating the cheating rate.

18

• Note that neither of these is “confirmation” of either theory, but evidence about the
relative proportion of cheating being more or less consistent with one of our hypotheses.

• This interview process is noisy, but appears to work to separate very large differences
in cheating rates. On the other hand, it might not work so well if we cared about the
difference between 5% cheating and 10% cheating rates, as the difference in the “true”
confessions would be swamped by the coin flips. If we wanted to tease out those differences,
we could use a weighted coin (to increase the number of “honest” confessions).

So we might say that around 42 “Yes” answers would let us completely distinguish the two
hypotheses. On the other hand, values between 25 and 42 would give us different levels of
confidence about the two hypotheses; around 38 (just to make up a number) might provide
evidence that the TA’s hypothesis is stronger than ours. We’ll talk later in the semester about
how to try to make these determinations.

References

19

	Load Environment
	Problems
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

	References

